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FIGURE 2. Assessment of incongruence (a, b) and genealogical signal (c) of yeast trees estimated for the 260 most conserved (260C) genes
and the 131 genes with the strongest genealogical signal (131S), under multiple binning strategies. Incongruence is measured as the topological
distance (PH85) from each gene- or supergene-tree topology with respect to (a) the concatenation or (b) the strong-signal species-tree topologies
of S&R (see S&R’s Fig. 1 and Supplementary Fig. S11c, respectively). Incongruence among trees from binned data decreases and genealogical
signal increases as a function of the length in binned sequences. Higher incongruence for 260C over 131S initially obtained with individual
gene alignments disappears for bin sets and is significantly reversed for the 12.5K bins in left panel. Weaker signal for 260C over 131S initially
obtained with individual gene alignments disappears for the 7.5–12.5K bin sets. Values and thick lines inside/outside boxes indicate data means
and medians, respectively. *U-test P<0.05; ***U-test P<0.0001.

U-test P<0.00001). Higher incongruence among the
most conserved gene trees obtained here and by S&R
could be an artifact resulting from analysing shorter
fragments with less information content (Fig. 1), rather
than due to conflicting signals.

To compensate for differences in sequence length
and sampling error among the 131S and 260C gene
sets, we explored the effect of binning genes into
“supergenes” of various fixed lengths. Data binning is
a statistical technique that can account for sampling
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error by increasing signal-to-noise ratio, and it has been
applied in phylogenetics recently (Bayzid and Warnow
2013). We concatenated genes to generate bins of 2500
(2.5K), 5000 (5K), 7500 (7.5K), 10,000 (10K), or 12,500
(12.5K) sites. Analyses of binned data show that the
relative incongruence between 260C and 131S initially
obtained with gene trees is no longer observed for bins
(Fig. 2a,b). Likewise, relative differences in bootstrap
support disappear for the 7.5–12.5K bins (Fig. 2c).
Remarkably, the 12.5K bins in the 260C set show a slightly
better performance than in the 131S set in terms of both
incongruence (3.2–5.0 vs. 5.6–6.4, respectively; Fig. 2a,b)
and bootstrap support (93.1% vs. 92.2%, respectively;
Fig. 2c), although the differences are only significant in
one comparison (Fig. 2a; P=0.016) presumably due to
small sample size (N =10).

Taken together, these results strongly suggest that
higher levels of incongruence and weaker signal
reported for the conserved genes are the result of
sampling error. Because of their intrinsic properties,
conserved genes are individually unlikely to yield well-
resolved and highly supported trees, but collectively
can be informative because they are expected to meet
the assumptions of evolutionary models more closely
than the complex dynamics of highly variable genes
(which are otherwise prone to systematic error and
model misspecification issues). Previous studies offer
empirical evidence for this prediction, showing that
slowly evolving genes, despite having fewer informative
sites, provide higher resolution and support for deep-
level radiations than rapidly evolving genes (e.g., Jian
et al. 2008; Regier et al. 2008; Zhang et al. 2012; Lang
et al. 2013).

Thus, we question the notion that inferring ancient
divergences requires selecting individual genes with
strong signals, as recommended by S&R. Our re-
analysis of S&R’s data set reinforces previous studies
that indicate that conserved genes are indeed good
phylogenomic markers. Identification of conserved
genes can be done effectively before assembling
phylogenomic data sets, without the need of a posteriori
selection based on inferred trees. For instance, recently
developed approaches that target regions of the
genome that are both highly conserved and shared
across genome-enabled taxa, can be used to identify
potential markers for phylogenetic inference (Li et al.
2007; Faircloth et al. 2012; Lemmon et al. 2012; Li
et al. 2013). Reduced-representation libraries can be
obtained via target-capture protocols (Gnirke et al. 2009)
and subsequently sequenced using massively parallel
sequencing platforms. Recommendations to focus on
selective data partitions assessed by phylogenetic
analysis may become relevant in the future, however,
once complete genomes are available for all species of
interest.

We have examined some of the factors that account
for methodological artifacts in a phylogenomic data
set comprising orthologous genes. It would be naive
to assume that selection of genes on the basis of
sampling error or evolutionary rate alone guarantees

phylogenetic accuracy, as both systematic biases and
biological processes acting alone or in concert generate
discordance. While the relative impact of coalescent
variance and systematic bias is rarely examined in
empirical or simulated data sets (but see Huang et al.
2010; Camargo et al. 2012; Betancur-R. et al. 2013),
coalescent-based species-tree methods are increasingly
gaining attention (Maddison 1997; Edwards et al. 2007;
Rosenberg and Tao 2008; Degnan and Rosenberg 2009;
Edwards 2009; Kubatko et al. 2009; Liu et al. 2009;
Huang et al. 2010). An unsettling corollary of the
binning experiment described above, however, is that
gene-tree discordance due to sampling error is so
extensive in this data set (Fig. 2a,b) that the efficacy of
approaches that account for coalescent variance without
successfully decoupling this effect or other systematic
biases inherent to the deep-scale nature of the yeast data
set are unclear (see also discussion in S&R). We concur
with S&R’s recommendation that best phylogenomic
practices demand careful exploration of internal conflict
in the data sets, but measures of incongruence among
partitions proposed in their article (e.g., internode
certainty) should be modified to consider sampling error
to avoid misleading results.

METHODS

The most conserved gene set (260C) includes genes
from the pool of 1070 gene orthologs with the highest
percentage of pairwise sequence identity, as estimated
with Geneious Pro v6 (Biomatters Ltd.). Following S&R,
the 131S set includes genes whose trees have mean
support values >80%. Initially, 17 genes were common
to both gene sets but they were finally excluded from the
conserved set to avoid overlap (i.e., the 260C set includes
260 of the 277 most conserved genes). Supergenes for
the 260C and 131S sets were assembled using the
“naive binning” approach (Bayzid and Warnow 2013),
by randomly concatenating all genes for each set and
exporting alignments of fixed lengths using PAUP*
v4.0b10 (Swofford 2002). The concatenated alignments
of the 260C and 131S sets are both of similar length (ca.
127,400 sites each).

Trees from bin sets were inferred in RAxML v7.3
(Stamatakis 2006) using the PROTGAMMAIWAGF
model with 30 independent replicate runs and
300 bootstrap replicates. Incongruence is measured
as the topological distance between the resulting
tree topologies under each treatment and two
alternative species-tree topologies (S&R’s Fig. 1a
and Supplementary Fig. S11c,f). Topological distances
were calculated using the R package Ape (Paradis
et al. 2004; R Development Core Team 2011). We used
the PH85 distance, which is twice the number of
internal branches defining different bipartitions of
the tips (Penny and Hendy 1985) and is equal to 2x
Robinson–Foulds, the most commonly used metrics
of tree distance. Genealogical signal for each tree is
measured as mean bootstrap support across nodes as
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estimated using the Ape package and custom R code.
Statistical significance among treatments was assessed
with the non-parametric Mann–Whitney U-test in R.
All supplementary files listed here, including figures,
tables, and aligned data sets are available from
the Dryad data repository at http://datadryad.org,
doi:10.5061/dryad.157d7.

SUPPLEMENTARY MATERIAL

Data files and/or other supplementary information
related to this article have been deposited at Dryad under
doi:10.5061/dryad.157d7.
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